Generalized information potential criterion for adaptive system training
نویسندگان
چکیده
منابع مشابه
Generalized information potential criterion for adaptive system training
We have previously proposed the quadratic Renyi's error entropy as an alternative cost function for supervised adaptive system training. An entropy criterion instructs the minimization of the average information content of the error signal rather than merely trying to minimize its energy. In this paper, we propose a generalization of the error entropy criterion that enables the use of any order...
متن کاملConvergence Analysis of the Information Potential Criterion in Adaline Training
In our recent studies we have proposed the use of minimum error entropy criterion as an alternative to minimum square error (MSE) in supervised adaptive system training. We have formulated a nonparametric estimator for Renyi’s entropy with the help of Parzen windowing. This formulation revealed interesting insights about the process of information theoretical learning. We have applied this new ...
متن کاملDiscriminative Adaptive Training Using the Mpe Criterion
This paper addresses the use of discriminative training criteria for Speaker Adaptive Training (SAT), where both the transform generation and model parameter estimation are estimated using the Minimum Phone Error (MPE) criterion. In a similar fashion to the use of I-smoothing for standard MPE training, a smoothing technique is introduced to avoid over-training when optimizing MPEbased feature-s...
متن کاملWilcoxon-type generalized Bayesian information criterion
We extend the basic idea of Schwarz (1978) and develop a generalized Bayesian information criterion for regression model selection. The new criterion relaxes the usually strong distributional assumption associated with Schwarz’s BIC by adopting a Wilcoxon-type dispersion function and appropriately adjusting the penalty term. We establish that the Wilcoxon-type generalized BIC preserves the cons...
متن کاملRegularization Parameter Selections via Generalized Information Criterion.
We apply the nonconcave penalized likelihood approach to obtain variable selections as well as shrinkage estimators. This approach relies heavily on the choice of regularization parameter, which controls the model complexity. In this paper, we propose employing the generalized information criterion (GIC), encompassing the commonly used Akaike information criterion (AIC) and Bayesian information...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks
سال: 2002
ISSN: 1045-9227
DOI: 10.1109/tnn.2002.1031936